草业学报 2013
菊苣主要表型性状的多元统计分析
DOI: 10.11686/cyxb20130632, PP. 257-267
梁小玉,张新全,白史且,季杨,黄琳凯,周凯
Keywords: 菊苣,表型性状,多元统计
Full-Text Cite this paper Add to My Lib
Abstract:
为探明菊苣不同来源、不同类型种植材料的表型变异特征及其原因,通过变异系数、相关性、聚类和主成分分析对80份菊苣属材料表型性状进行多元统计分析。结果表明,1)不同菊苣种质资源的形态学特征存在广泛的变异,3级生殖枝数变异幅度最大,变异系数为31.11%;2)菊苣形态学特征间存在显著相关性,叶片宽大类型的菊苣种质,植株高、生殖枝多、茎秆粗壮,但单个花序小花数少;3)聚类分析表明,不同菊苣种质资源可划分为3个形态类型,即窄叶匍匐型、中等宽叶直立型和阔叶直立型;4)主成分分析表明,不同材料间和类型间的差异主要来源于叶片大小、株高和小花数、小花直径。
References[1] Hauser T P, Jrgensen R B, Toneatto F. Reduced sexual compatibility between cultivated and wild chicory and their F1 hybrids. Genetic Resources and Crop Evolution, 2012, 59: 783-791.
[2] Baes P G, Cutsem P J. Isozyme polymorphism in three gene pools of cultivated chicory (Cichorium intybus L.). Euphytica, 1993, 71:143-150.
[3] Kir L P, Felber F, Flavell A, et al. Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L.. Genetic Resources and Crop Evolution, 2009, 56: 405-419.
[4] Kiers A M, Mes T H M, Meijden der R Van, et al. A search for diagnostic AFLP markers in cichorium species with emphasis on endive and chicory cultivar groups. Genome, 2000, 43: 470-476.
[5] Bais Pal H, Ravishankar G A. Cichorium intybus L. - cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. Journal of the Science of Food and Agriculture, 2001, 81: 467-484.
[6] Wang Q Z, Cui J. Perspectives and utilization technologies of chicory (Cichorium intybus L.): A review. African Journal of Biotechnology, 2011, 10(11): 1966-1977.
[7] 张玉, 白史且, 王曾珍, 等. 航天搭载菊苣种子的生物学特性研究. 草业学报, 2012, 21(2): 300-304. 浏览
[8] 刘建宁, 石永红, 侯志宏, 等.4份菊苣种质材料苗期抗旱性评价. 草业学报, 2012, 21(2): 241-248. 浏览
[9] Sanderson M A, Labreveux M, Hall M H, et al. Nutritive value of chicory and english plantain forage. Crop Science, 2003, 43: 1797-1804.
[10] Ivarsson E, Frankow -Lindberg B E, Andersson H K, et al. Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage. Animal, 2011, 5: 558-564.
[11] Sulas L. Forage chicory: A valuable crop for mediterranean environments. Cahiers Options Mediterraneennes, 2004, 62: 137-140.
[12] Kraker de J W, Franssen M C, Joerink M, et al. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. demonstration of cytochrome P450-Catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiology, 2002, 129: 257-268.
[13] Kjos N P, verland M, Fauske A K, et al. Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livestock Science, 2010, 134: 143-145.
[14] Lema M, Kebe S, Opio R. Growth rate, carcass trait and blood chemistry of cross-bred meat goats grazing puna chicory, rackmaster refuge mix and sahara bermudagrass. Journal of Applied Animal Research, 2008, 33: 1-6.
[15] Rabbani M A, Iwabuchi A, Murakami Y, et al. Phenotypic variation and the relationships among mustard (Brassica juncea L.) germplasm from pakistan. Euphytica, 1998, 101: 357-366.
[16] Ayana A, Bekele E. Multivariate analysis of morphological variation in sorghum (Sorghum bicolor (L.) moench) germplasm from ethiopia and eritrea. Genetic Resources and Crop Evolution, 1999, 46: 273-284.
[17] 何庆元, 王吴斌, 杨红燕, 等. 利用SCoT标记分析不同秋眠型苜蓿的遗传多样性. 草业学报, 2012, 21(2): 133-140. 浏览
[18] Smith J S C, Smith O S. The description and assessment of distances between inbred lines of maize: The utility of morphological, biochemical and genetic descriptors and a scheme for the testing of distinctiveness between inbred lines. Maydica, 1989, 34: 151-161.
[19] 周波, 江海东, 张秀新, 等. 部分引进牡丹品种的形态多样性. 生物多样性, 2011, 19(5): 543-550.
[20] 刘新龙, 马丽, 蔡青, 等. 云南甘蔗品种表型性状的遗传多样性分析. 植物遗传资源学报, 2010, 11(6): 703-708.
[21] Ortiz R. Morphological variation in musa germplasm. Genetic Resources and Crop Evolution, 1997, 44: 393-404.
[22] Swennen R, Vuylsteke D, Ortiz R. Phenotypic diversity and patterns of variation in west and central african plantains (Musa spp., Aab Group Musaceae). Economic Botany, 1995, 49: 320-327.
[23] Harrison R E, Luby J J, Furnier G R, et al. Differences in the apportionment of molecular and morphological variation in north American strawberry and the consequences for genetic resource management. Genetic Resources and Crop Evolution, 2000, 47: 647-657.
[24] Murthy H N, Manohar S H. Estimation of phenotypic divergence in a collection of Cucumis melo, including shelf-life of fruit. Scientia Horticulturae, 2012, 148: 74-82.
[25] Kir L P, Philipp M, Jrgensen R B, et al. Genealogy, morphology and fitness of spontaneous hybrids between wild and cultivated chicory (Cichorium intybus). Heredity (Edinb), 2007, 99: 112-120.
[26] 罗燕, 白史且, 彭燕, 等. 菊苣种质资源的重要形态性状的变异研究. 草地学报, 2011, 19(1): 107-113, 121.
[27] Van C P, Du J P, Boutte C, et al. Distinction between cultivated and wild chicory gene pools using AFLP markers. Theoretical and Applied Genetics, 2003, 107: 713-718.
[28] Andersen C, Nielsen T S, Purup S, et al. Phyto-oestrogens in herbage and milk from cows grazing white clover, red clover, lucerne or chicory-rich pastures. Animal, 2009, (3): 89-95.
[29] Casas A, Caballero J, Valiente-Banuet A, et al. Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in central mexico. American Journal of Botany, 1999, 86: 522-533.
[30] Jaradat A A, Shahid M. Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the middle east. Genetic Resources and Crop Evolution, 2006, 53: 225-244.
[31] Norberg J, Swaney D P, Dushoff J, et al. Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences, 2001, 98: 11376-11381.
[32] ivkovi B, Radovi J, Sokolovic/ D, et al. Assessment of genetic diversity among alfalfa (Medicago sativa L.) genotypes by morphometry, seed storage proteins and RAPD analysis. Industrial Crops and Products, 2012, 40: 285-291.
[33] Dias J S, Monteiro A A, Lima M B.Numerical taxonomy of portuguese tronchuda cabbage and galega kale landraces using morphological characters. Euphytica, 1993, 69: 51-68.
[34] 姜永平, 吴春芳, 陈惠, 等. 12个鲜食大豆数量性状的主成分和遗传距离分析. 中国农学通报, 2012, 23(8): 193-197.
[35] Simone De M, Morgante M, Lucchin M, et al. A first linkage map of Cichorium intybus L. using a one-way pseudo-testcross and PCR-derived markers. Molecular Breeding, 1997, 3: 415-425.
[36] Kiers A M, Mes T H M, Van Der Meijden R, et al. Morphologically defined Cichorium (Asteraceae) species reflect lineages based on chloroplast and nuclear (Its) DNA data. Systematic Botany, 1999, 24(4): 645-659.
[37] Amurrio J M, Ron A M D, Zeven A C. Numerical taxonomy of iberian pea landraces based on quantitative and qualitative characters. Euphytica, 1995, 82: 195-205.
[38] 于万里, 张博. 新疆昭苏野生黄花苜蓿果实形态变异研究. 草业学报, 2012, 21(2): 249-255. 浏览
[39] 汪宝卿, 张礼凤, 戴海英, 等. 黄淮海地区夏大豆农艺性状的遗传变异、相关及主成分分析. 大豆科学, 2012, 31(2): 208-212.
[40] Grant P R, Grant B R. Hybridization of bird species. Science, 1992, 25: 193-197.
[41] Fufa H, Baenziger P S, Beecher B S, et al. Comparison of phenotypic and molecular marker-based classifications of hard Red winter wheat cultivars. Euphytica, 2005, 145: 133-146.
[42] Kefyalew T, Tefera H, Assefa K, et al. Phenotypic diversity for qualitative and phenologic characters in germplasm collections of tef (Eragrostis Tef). Genetic Resources and Crop Evolution, 2000, 47: 73-80.
[43] Cordell S, Goldstein G, Mueller-Dombois D, et al. Physiological and morphological variation in Metrosideros polymorpha, a dominant hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 1998, 113: 188-196.
[44] Düzyaman E. Phenotypic diversity within a collection of distinct okra (Abelmoschus esculentus) cultivars derived from Turkish Land races. Genetic Resources and Crop Evolution, 2005, 52: 1019-1030.
[45] Singh R, Sharma P, Varshney R K, et al. Chickpea improvement: role of wild species and genetic markers. Biotechnology & Genetic Engineering Reviews, 2008, 25: 267-313.
Full-Text
版权声明:内容均来源于互联网 如有侵权联系删除